Abstract— In deep submicron technologies, leakage power becomes a key for a low power design due to its ever increasing proportion in chip’s total power consumption. Power dissipation is an important consideration in the design of CMOS VLSI circuits. High power consumption leads to reduction in battery life in case of battery powered applications and affects reliability packaging and cooling costs. We propose a technique called LCPMOS for designing CMOS gates which significantly cuts down the leakage current without increasing the dynamic power dissipation. LCPMOS, a technique to tackle the leakage problem in CMOS circuits, uses single additional leakage control transistor, driven by the output from the pull up and pull down networks, which is placed in a path from pull down network to ground which provides the additional resistance thereby reducing the leakage current in the path from supply to ground. The main advantage as compared to other techniques is that LCPMOS technique does not require any additional control and monitoring circuitry, thereby limits the area and also decreases the power dissipation in active state. Along with this, the other advantage with LCPMOS technique is that it reduces the leakage power to an extent of 91.54%, which is more efficient in aspects of area and power dissipation compared to other leakage power reduction techniques.

Index Terms— sub threshold leakage current; LCPMOS; voltage scaling; LCT; self-controlled LCT; deep-submicron.

I. INTRODUCTION

The main sources for power dissipation are: 1) capacitive power dissipation due to the charging and discharging of the load capacitance; 2) short-circuit currents due to the existence of a conducting path between the voltage supply and ground for the brief period during which a logic gate makes a transition; and 3) leakage current. The leakage current consists of reverse-bias diode currents and subthreshold currents. The former is due to the stored charge between the drain and bulk of active transistors while the latter is due to the carrier diffusion between the source and drain of the OFF transistors as shown in fig1.

Digital integrated circuits are found everywhere in modern life and many of them are embedded in mobile devices where limited power resource is available (e.g. mobile phones, watches, mobile computers...). To permit a usable battery runtime, such devices must be designed to consume the lowest possible power. Furthermore, low power is also very important for non-portable devices, too. Indeed reduced power consumption can highly decrease the packaging costs and highly increase the circuit reliability, which is tightly related to the circuit working temperature. Hence, low power consumption is a zero-order constraint for most ICs manufactured today. In fact, higher performance-per-watt is the new mantra for micro-processor chip manufacturers today. In order to achieve high density and high performance, CMOS technology feature size and threshold voltage have been scaling down for decades. Because of this trend, transistor leakage power has increased exponentially. The reduction of the supply voltage is dictated by the need to maintain the electric field constant on the ever shrinking gate oxide. Unfortunately, to keep transistor speed (proportional to the transistor “on” current) acceptable, the threshold voltage must be reduced too, which results in an exponential increase of the “off” transistor current, i.e. the current constantly flowing through the transistor even when it should be “non-conducting”.

As the feature size becomes smaller, shorter channel lengths result in increased sub-threshold leakage current through a transistor increases when it is off as shown in fig2. Low threshold voltage also results in increased sub-threshold leakage current because transistors cannot be turned off completely. For these reasons, static power consumption, i.e. leakage power dissipation has become a significant portion of total power consumption for current and future silicon technologies. To solve the power dissipation problem, many researchers have proposed different ideas from the device level to the architectural level and above.
In this paper, we describe a new leakage power reduction technique called LCPMOS (Leakage Control PMOS) for designing CMOS circuits. The rest of the paper is organized as follows. Section II describes briefly the prior works on leakage power reduction and their limitations. Section III introduces the transistor models used for estimating the leakage power. Our design strategy and an approach for minimizing the area overhead are described in Sections IV. Results are presented in Section V, followed by conclusions in Section VI respectively.

I. LIMITATIONS WITH RELATED WORK

A. MTCMOS

A high-threshold NMOS gating transistor is connected between the pull-down network and the ground, and low-threshold voltage transistors are used in the gate. The reverse conduction paths exist, which tends the noisemargin to reduce or may result in complete failure of the gate. There also exists a performance penalty due to the high-threshold transistors in series with all the switching current paths.

Dual Vth technique is a variation in MTCMOS, in which the gates in the critical path use low-threshold transistors and high-threshold transistors for gates in non-critical paths [3],[7]. Both the methods require additional mask layers for each value of Vth in fabrication, which is a complicated task depositing two different oxides thickness, hence making the fabrication process complex. The techniques also suffer from turning-on latency i.e., the idle of circuit cannot be used immediately after reactivated since sometime is needed to return to normal operating condition. The latency is typically a few cycles for former method, and for Dual technology, is much higher. When the circuits active, these techniques are not effective in controlling the leakage power.

B. SLEEP Transistor Technique

This is a State-destructive technique which cuts off either pull-up or pull-down or both the networks from supply voltage or ground or both using sleep transistors. This technique is MTCMOS, which adds high-Vth sleep transistors between pull-up networks and Vdd and pull-down networks and gnd while for fast switching speeds, low-Vth transistors are used in logic circuits [8]. This technique dramatically reduces leakage power during sleep mode. However, the area and delay are increased due to additional sleep transistors. During the sleep mode, the state will be lost as the pull-up and pull-down networks will have floating values. These values impact the wakeup time and energy significantly due to the requirement to recharge transistors which lost state during sleep.

C. ForcedStack

In this technique, every transistor in the network is duplicated with both the transistors bearing half the original transistor width [6]. Duplicated transistors cause a slight reverse bias between the gate and source when both transistors are turned off. Because sub-threshold current is exponentially dependent on gate bias, it obtains substantial current reduction. It overcomes the limitation with sleep technique by retaining state but it takes more wakeup time.

D. ZIGZAG Technique

Wake-up cost can be reduced in zigzag technique but still state losing is a limitation. Thus, any particular state which is needed upon wakeup must be regenerated somehow. For this, the technique may need extra circuitry to generate a specific input vector.

E. SLEEPY STACK Techniqu

This technique combines the structure of the Forced stack technique and the sleep transistor technique. In the sleepy stack technique, one sleep transistor and half sized transistors replaces each existing transistor [10]. Although using of W/2 for the width of the sleep transistor, changing the sleep transistor width may provide additional tradeoffs between delay, power and area. It also requires additional control and monitoring circuit for the sleep transistors.

F. LEAKAGE FEEDBACK Technique

This technique is based on the sleep approach. To maintain logic during sleep mode, the leakage feedback technique uses two additional transistors and the two transistors are driven by the output of an inverter which is driven by the output of the circuit implemented utilizing leakage feedback. Performance degradation and increase in area are the limitations along with the limitation of sleep technique.

G. SLEEPYKEEPER Technique

This technique consists of sleep transistors connected to the circuit with NMOS connected to Vdd and PMOS to Gnd. This creates virtual power and ground rails in the circuit, which affects the switching speed when the circuit is active [9]. The identification of the idle regions of the circuit and the generation of the sleep signal need additional hardware capable of predicting the circuit states accurately, increasing the area requirement of the circuit. This additional circuit consumes power throughout the circuit operation to continuously monitor the circuit state and control the sleep transistors even though the circuit is in an idle state.

H. LECTOR Technique

This technique consists of two self-controlled transistors which increases the resistance in the path from source to
ground, which increases the area of the circuit, one of the most important constraint in the design of VLSI circuits.

II. LCPMOS

In this proposed technique, we introduce a single leakage control transistor within the logic gate for which the gate terminal of leakage control transistor (LCT) is controlled by the output of the circuit itself. Which increases the resistance of the path from pull down network to ground thereby increasing the resistance from V_{dd} to ground, leading to significant decrease in leakage currents. The main advantage as compared to other techniques is that LCPMOS technique does not require any additional control and monitoring circuitry, thereby limits the area and also the power dissipation in active state.

Leakage Control PMOS (LCPMOS) technique is illustrated in detail with the case of an inverter. A LCPMOS INVERTER is shown in Figure 6. A PMOS is introduced as LCT between N1 and Gnd nodes of inverter. When V_{dd}=1V, input A=0, the output is high. As the output drives the LCT the LCT goes to OFF state hence provides high resistance path between V_{dd} and Gnd. When A=1, the output is low; hence LCT will be in ON state hence output is low. LCPMOS inverter for all possible inputs are tabulated in Table I.

TABLE I. STATE MATRIX OF LCPMOS INVERTER

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Input Vector (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>0</td>
</tr>
<tr>
<td>M1</td>
<td>ON State</td>
</tr>
<tr>
<td>M2</td>
<td>OFF State</td>
</tr>
<tr>
<td>LCT</td>
<td>Near Cut-Off</td>
</tr>
</tbody>
</table>

In the sleep related technique, the sleep transistors have to be able to isolate the power supply and/or ground from the rest of the transistors of the gate. Hence, they need to be made bulkier dissipating more dynamic power. This offsets the savings yielded when the circuit is idle. Sleep transistor technique depends on input vector and it needs additional circuitry to monitor and control the switch in sleep transistors, consuming power in both active and idle states. In comparison, LCPMOS generates the required control signals within the gate and is also vector independent.

Single transistor is added in LCPMOS technique in every path from V_{dd} to Gnd irrespective of number of transistors in pull-up and pull-down network. Where as, forced stack save 100% area overhead. The loading requirement with LCT is a constant which is much lower.

IV. APPLYING LCPMOS TO CMOS CIRCUITS

Various circuit applications of the LCPMOS technique are explored in this section. The LCPMOS technique is applied to the following CMOS circuits and also the respective basecase are implemented to calculate the amount of leakage power reduced in LCPMOS technique.

A. LCPMOS based NOT gate
The 2-input CMOS NAND gate is shown in Figure 7 with the one LCT added between pull-down network and gnd. The simulation wave forms of LCPMOS NAND from Figure 8 show that the basic characteristics of NAND are retained by LCPMOS NAND.

C. LCPMOS based NOR gate

The 2-input CMOS NOR gate is shown in Figure 8 with the one LCT added between pull-down network and gnd. The simulation wave forms of LCPMOS NOR from Figure 8 show that the basic characteristics of NOR are retained by LCPMOS NOR.
V. EXPERIMENTAL RESULTS

The leakage power is measured using the S-EDIT simulator. The results obtained through the technique for NOT gate is shown in Table III. Simulation for the NOT is performed by taking three different process parameters Viz 180nm, 90nm, 65nm.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Leakage Power (uW)</th>
<th>%age decrease in power dissipation (LCPMOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE CASE</td>
<td>LECT OR</td>
<td>LCPMOS</td>
</tr>
<tr>
<td>180nm</td>
<td>130</td>
<td>78</td>
</tr>
<tr>
<td>90nm</td>
<td>110</td>
<td>31</td>
</tr>
<tr>
<td>65nm</td>
<td>98</td>
<td>5</td>
</tr>
</tbody>
</table>

Table III gives the results for 2-input NAND for, 180nm, 90nm and 65nm technologies. Table IV gives the results for 2-input NOR for, 180nm, 90nm and 65nm technologies.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Leakage Power (uW)</th>
<th>%age decrease in power dissipation (LCPMOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE CASE</td>
<td>LECT OR</td>
<td>LCPMOS</td>
</tr>
<tr>
<td>180nm</td>
<td>140</td>
<td>90</td>
</tr>
<tr>
<td>90nm</td>
<td>125</td>
<td>37</td>
</tr>
<tr>
<td>65nm</td>
<td>115</td>
<td>75</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

The increase in leakage power because of the scaling down of device dimensions, supply and threshold voltages in order to achieve high performance and low dynamic power dissipation, becomes more with the deep-submicron and nano meter technologies and thus it becomes a great challenge to tackle the problem of leakage power. LCPMOS uses one LCT which is controlled by the output of circuit itself. LCPMOS achieves the reduction in leakage power compared to other leakage reduction techniques, such as LECTOR, sleepy stack, sleepykeeper, etc, along with the advantage of not affecting the dynamic power, since this technique does not require any additional control and monitor circuitry and also in this technique, the exact logic state is maintained. The LCPMOS technique when applied to generic logic circuits achieves up to 80-92% leakage reduction over the respective conventional circuits without affecting the dynamic power. A tradeoff between Propagation delay and area overhead exists here.

REFERENCES


